文章探討了IEEE 802.16a/d/e WirelessMAN的實現,全球的頻譜管理組織已經指定了用於寬頻部署的頻段,包括得到授權的和未得到授權的頻段。在討論功率問題以及未來頻譜分配的同時,本文還討論了射頻前端到基頻(SoC)的介面問題。

就在Wi-Fi無線區域網(WLAN)借助IEEE 802.11標準快速起飛的時候,新近出現的基於IEEE 802.16無線都會網路(MAN)標準的MAN也即將快速啟動。就頻譜而言,IEEE 802.16a/d/e WirelessMAN也稱為WiMAX(微波接入的全球互作業性)。儘管802.16x設置了標準化和互通性規範,但WiMAX論壇這個全球寬頻無線接入(BWA)產業協會仍提供了品質控制和認證以保證成功的標準化部署。WiMAX論壇的首要任務是聯合全球大量的參與者,包括晶片生產商、軟體開發商、設備生產商和服務供應商來支援IEEE WirelessMAN/ETSI HyperMAN標準,並保證全球性的相容性和互通性,但同時還建構一個競爭性的領域以降低服務供應商和用戶的成本。

IEEE 802.16和WiMAX將推進BWA以加速成本可接受的全球寬頻網路部署。

圖1:WiMAX用戶站的基本架構圖
:不同的RF前端提供頻段靈活性。

然而,標準化並不意味全球的‘一致’以及‘所有’已部署的經認證的WiMAX設備的自動互作業性。標準定義和建議了媒體存取控制(MAC)層和物理層(PHY)的關鍵框架,MAC層根據標準協議對原始數據進行封包或解包以提供數據、語音和視頻,PHY層根據用戶需求和射頻(RF)連接品質處理空中介面和調變方案。

IEEE 802.16標準產生了各種框架,但也允許供應商進行定製以滿足特定的或區域性的市場需求,或者允許供應商透過增加增值特性來使自己區別於競爭者。更甚者,在全球範圍內,不同區域的射頻介面存在變化。在這個方面,頻譜管理者在決定針對不同,甚至有時是競爭業務的頻譜分配上扮演關鍵角色,如美國的聯邦通訊委員會(FCC)。透過這些管理者,政府可以使某些與世界其他地方一致或不一致的頻譜為某個指定的業務所用。對於WiMAX的全球部署來說也是這樣,儘管確實存在一些非常共同的RF問題,但是在頻譜的分配和管理上也存在大量的差異性。

但是,並不僅僅是管理的問題造成在WiMAX無線MAN全球部署上的RF頻段差異性,在一個區域內的服務營運商和無線網際網路服務供應商(WISP)也具有頻段的選擇問題。可用的和已分配的頻譜包括不同的已授權的和未授權(免授權)的頻段,業務營運商可以選擇利用它獲得授權的頻譜來提供業務並/或選擇使用未授權頻譜。大多數WISP選擇使用未授權頻譜,因為這些頻譜免費使用,大幅降低最終用戶的成本。

WiMAX無線都會網路部署的頻譜差異性導致了對具有不同RF的基地台(BS)和用戶站(SS)的需求。如圖1中所展示,一個典型的WiMAX SS系統包括一個控制處理器、一個MAC單元、一個基頻處理器(BBP)和一個類比RF前端,這個RF前端的作用是將802.16x放入到一個授權的或未授權的頻段中。設備供應商期望晶片製造商來提供完整的參考設計、材料清單、元件、軟體/韌體以及技術支援,以便他們能快速地生產WiMAX設備以滿足這些RF差異化的市場需求。這種服務於某種特定頻段的介面就是RF前端。

關注802.16d

得到WiMAX認證的BWA應用包括蜂巢式網路回程(backhauling)、有線和無線LAN回程、無線MAN將BWA帶入到家庭或商業中,作為DSL或有線接入之外的一個選擇。然而,最大的爆發性市場成長將在802.16x未來版本解決了可攜性和行動性問題,將BWA直接帶入到終端用戶的時候。這個‘最後一哩’必然是利用超視距(NLOS)RF傳播的點對多點的結構。在這個領域,WiMAX網路將以授權和免授權頻段出現在全世界,在很多情況下代替802.16之前的已有業務。

當前,人們關注2GHz到6GHz的頻段。這些是已分配的頻寬,相對於10GHz到66GHz的可用頻寬來說很窄。10GHz以下的微波頻段被稱為公分波段,10GHz以上的為毫米波段。毫米波段具有很寬的通道頻寬,提供很大的數據容量,因此通常非常適合非常高數據速率視距回程應用(主要管線),而公分波段非常適合於多點、超視距、支線和最後一哩分佈應用。

IEEE 802.16d支援固定NLOS BWA來替代或作為對DSL和線纜接入在最後一哩的補充,這是WiMAX部署的第一波。進一步,IEEE 802.16e將在2005年被批准,將加入行動和可攜特性以支援像筆記型電腦和PDA在6GHz以下頻率的應用。在這些部署中,授權和免授權頻譜都將被利用到。

授權和免授權頻譜

 

圖2顯示了2GHz到6GHz頻率範圍內BWA可用的頻段。注意這些頻段是以授權或免授權來標示的,授權頻段是指那些被承運商所有的,它們已經為用這些頻段支付費用,免授權頻段是免費給任何試驗或企業應用的。基於IEEE 802.11a/b/g的Wi-Fi佔用免授權頻段,儘管在這些頻段中存在相競爭的技術,但已經經驗證非常穩定。在每個頻段內,通道間距相對較窄,因此相對於高頻率的微米波段的通道來說限制了數據率。

圖2:2GHz到6GHz公分波段可以用在BWA。

很多無線ISP尋求利用免授權頻段,因為這是免費的,不僅節省區域網路部署的成本還節省時間,這同樣也節省用戶的成本,並提供了DSL和電纜數據機服務以外的選擇。在美國,免授權頻段同樣具有吸引力,因為在2GHz-6GHz的頻率範圍內沒有多少授權頻譜可用。另外一方面,擁有授權頻段的主要營運商可以推銷他們的服務為‘商業級’的服務,因為他們被認為是穩定而可靠的,享有主要品牌的聲譽。

頻段分配

3.5GHz~3.5GHz頻段是一段已授權頻譜,在很多歐洲和亞洲國家可以用在BWA上,但在美國卻不行。這個頻段是最擁擠的,代表最大的全球BWA市場,覆蓋了從3.3GHz~3.6GHz的300MHz頻寬,這個頻段為大管線回程到廣域網路(WAN)業務提供了非常大的靈活性。主要的營運商在採用這個授權頻譜後,都可以透過規模經濟和WiMAX設備的低成本為用戶提供具有競爭性的收費。

5GHz U-NII & WRC頻段-免授權國家資訊基礎設施(U-NII)頻段擁有三個主要的頻段:低和中U-NII頻段(5,150-5,350)(802.11a)、WRC(5,470-5,725)以及上端U-NII/ISM頻段(5,725-5,850)。Wi-Fi存在於低和中U-NII頻段,這已證實可用於BWA。很多重疊的5GHz頻段標誌著BWA在全球的成長。最新分配的世界無線電大會(WRC) 5,470-5,725MHz頻段擴大增加了免授權頻段頻寬。大多數WiMAX執行在U-NII 5,725-5,850MHz頻段的上端,因為在這個頻段很少有競爭性業務和干擾,也就是Wi-Fi和室外功率允許在2到4瓦的範圍,而在低和中U-NII頻段的功率只有1W。分析家和商業人士認為WiMAX在免授權頻率內將有強勁的成長。

WCS-兩個無線通訊業務(WCS)頻段是兩個15MHz的頻率片斷,分別為2,305MHz到2,320MHz和2,345MHz到2,360MHz。兩者之間的25MHz頻率間隙分配被用來作為數位音頻無線業務(DARS),這產生了由DARS地面中繼器導致的潛在干擾問題。在這些頻段的成功部署將要求非常高的頻率效率,例如Wi-Fi和WiMAX都採用正交頻分再使用(OFDM)。

2.4GHz ISM-2.4GHz工業、科技和醫學(ISM)頻段為免授權的,為BWA的部署提供了大約80MHz的頻寬。當前的Wi-Fi就存在於這個頻段,已經證明能為WLAN提供穩定的服務。未來規定可以互作業的MAC和BBP要求的WiMAX類(profile)將同時帶來這兩種業務,為用戶提供大範圍行動性的互補作業。

MMDS-多通道多點分配業務(MMDS)頻譜包括在2,500MHz到2,690MHz範圍內,間距為6MHz的31個通道,還包括教學電視固定服務(ITFS)。由於最初用作教育電視的目的,這個頻譜沒有得到充分的利用,美國FCC已經將這個頻譜分配給BWA業務。BWA供應商透過FCC的拍賣和/或者向ITFS租用通道來獲得對這個頻譜的利用。在美國,Sprint和Nextel是這裡主要的頻譜擁有者。分析家希望在未來的若干年內,在這個頻段內BWA市場有很大的成長。

由於高成長和應用的潛力,WiMAX論壇專注於其初始的MMDS的類建立和認證工作,3.5GHz已授權頻段和免授權U-NII 5GHz頻段較少干擾,能提供合理的功率水平以及足夠的頻寬。這將有助於保證全球WiMAX BWA業務的高成長率,因為這些頻段代表著最大的潛在市場,而且由於規模經濟而可以實現較低的成本。

發射和接收訊號強度

發射和接收訊號的功率和功率控制對於任何WiMAX中的系統效率來說都非常的重要,功率必須得到有效管理以保證穩定的通訊和減少潛在的干擾。此外,根據每個用戶的情況進行功率動態控制,決定於用戶的規格、到BS的距離。

正如WiMAX標準中所規定,2GHz到11GHz的公分波段的接收功率是相同的。接收器必須能準確地解碼最低通道功率為-30dBm(1uW)的訊號,並能承受0dBm(1mW)的強訊號,而且不損壞前端電路。此外,Rx應該能夠提供最低60dB的鏡像抑制。WiMAX標準規定‘鏡像抑制要求必須包含於產生在接收器射頻和其後的中頻的所有鏡像條件中’。堅持這些要求將保證在近距離和遠距離條件下可靠地工作。

傳輸要求

不利用子通道(單一載波)的用戶站必須提供30dB範圍的功率控制。對於利用子通道的SS(OFDM)(這種SS將包括所有2GHz到11GHz的經過認證的WiMAX SS),發射器必須具有50dB的動態功率控制,控制步進不小於1dB。功率控制精確度必須在高達30dB範圍內達到+/-1.5dB以內,或者在30dB以上達到+/-3dB。

對於BS發射器,輸出功率電平控制必須不低於10dB。實際的發射功率則必須取決於用戶的距離、傳輸特性、通道頻寬和調變方案(BPSK、QPSK、16QAM、64QAM)。BPSK是數據效率最低的調變方法,在SS與BS之間距離很遠的情況下採用,因此需要更高的發射功率。而64QAM提供非常高的數據效率(每個符號的位元數),當SS與BS的距離相對較近的時候採用,因此需要較低發射功率。

SoC與RF介面

 

參照圖1,RF前端與SoC之間的介面涉及到用於處理作業和發射器和接收器的內部管理功能,以及I/Q訊號到A/D和D/A數據轉換器的介面控制訊號。另外,調變器電路發送到SoC的接收數據應該是差分的‘I’和‘Q’訊號。可以在接收端採用衰減器來處理校準和增益控制,以保證最大的位元利用率、轉換效率以及類比數位轉換器(ADC)轉換效率。

WiMAX未來的頻譜

 

當前全球在進行WiMAX和其他類似寬頻無線接入業務部署時,正在考慮額外的頻段。在日本,2007年後將用到4.9GHz-5.0GHz的頻段,同時也在考慮將來採用5.47GHz-5.725GHz頻段。前者在BS部署時需要得到授權,將支援5MHz、10MHz和20MHz頻寬,而後者有可能不需要授權,並可能支援20MHz頻寬。

北美市場正顯示出在4.9GHz寬頻公共安全頻段部署WiMAX的興趣。甚至有興趣使用已得到授權的800MHz和免授權的915MHz ISM頻段作為WiMAX和類似業務的部署。WiMAX標準將使期待已久的能滿足用戶行動性、語音服務和高數據速率應用的頻譜效率和吞吐量得以實現。由於其超視距特性,因此可以允許更多用戶接入,實現更低的部署成本、更大的容量,以及因為標準化和互作業性帶來的低CPE成本而滲透到大眾消費市場。更不用說,它是寬頻行動性實現的無障礙途徑,將成為‘4G’的基礎,提供真正的自由行動性。

供稿:富士通微電子美國公司

arrow
arrow
    全站熱搜

    馬堤 發表在 痞客邦 留言(0) 人氣()